baichuan-7B: 开源可商用支持中英文的最好大模型
Contents
背景
baichuan-7B 是由百川智能开发的一个开源可商用的大规模预训练语言模型。
基于 Transformer 结构,在大约1.2万亿 tokens 上训练的70亿参数模型,支持中英双语,上下文窗口长度为4096。
在标准的中文和英文权威 benchmark(C-EVAL/MMLU)上均取得了同参数规模下的最好效果。
baichuan-7B的优点
- 在同尺寸模型中baichuan-7B达到了目前SOTA的水平。
- baichuan-7B使用自有的中英文双语语料进行训练,在中文上进行优化,在C-Eval达到SOTA水平。
- 不同于LLaMA完全禁止商业使用,baichuan-7B使用更宽松的开源协议,允许用于商业目的。
数据收集
- 原始数据包括开源的中英文数据和自行抓取的中文互联网数据,以及部分高质量知识性数据。
- 参考相关数据工作,频率和质量是数据处理环节重点考虑的两个维度。 我们基于启发式规则和质量模型打分,对原始数据集进行篇章和句子粒度的过滤。在全量数据上,利用局部敏感哈希方法,对篇章和句子粒度做滤重。
模型结构
整体模型基于标准的 Transformer 结构,采用了和 LLaMA 一样的模型设计。
-
位置编码:rotary-embedding
是现阶段被大多模型采用的位置编码方案,具有更好的外延效果。虽然训练过程中最大长度为4096,但是实际测试中模型可以很好的扩展到 5000 tokens 上,如下图:
-
激活层:SwiGLU, Feedforward 变化为(8/3)倍的隐含层大小,即11008。
-
Layer-Normalization: 基于 RMSNorm 的 Pre-Normalization。
预训练
采用 DeepSpeed 框架进行训练,在原本的LLaMA框架上进行诸多修改以提升训练时的吞吐,具体包括:
- 算子优化技术:采用更高效算子,如 Flash-attention,NVIDIA apex 的 RMSNorm 等。
- 算子切分技术:将部分计算算子进行切分,减小内存峰值。
- 混合精度技术:降低在不损失模型精度的情况下加速计算过程。
- 训练容灾技术:训练平台和训练框架联合优化,IaaS + PaaS 实现分钟级的故障定位和任务恢复。
- 通信优化技术,具体包括:
- 采用拓扑感知的集合通信算法,避免网络拥塞问题,提高通信效率。
- 根据卡数自适应设置 bucket size,提高带宽利用率。
- 根据模型和集群环境,调优通信原语的触发时机,从而将计算和通信重叠。
基于上述的几个优化技术,在千卡A800机器上达到了7B模型182Tflops的吞吐,GPU峰值算力利用率高达58.3% 。
最终的loss如下图:
实验效果
C-Eval
C-Eval 数据集是一个全面的中文基础模型评测数据集,涵盖了52个学科和四个难度的级别。
使用该数据集的dev集作为 few-shot 的来源,在 test 集上进行了 5-shot 测试。
先修改 evaluate_zh.py
中的 OPENMODEL_PATH 和 CEVAL_DATA_PATH 两个值,分别是模型(文件夹)存放的路径和 C-Eval 数据集的路径。再执行下面的脚本。
|
|
结果
Model 5-shot | Average | Avg(Hard) | STEM | Social Sciences | Humanities | Others |
---|---|---|---|---|---|---|
GPT-4 | 68.7 | 54.9 | 67.1 | 77.6 | 64.5 | 67.8 |
ChatGPT | 54.4 | 41.4 | 52.9 | 61.8 | 50.9 | 53.6 |
Claude-v1.3 | 54.2 | 39.0 | 51.9 | 61.7 | 52.1 | 53.7 |
Claude-instant-v1.0 | 45.9 | 35.5 | 43.1 | 53.8 | 44.2 | 45.4 |
moss-moon-003-base (16B) | 27.4 | 24.5 | 27.0 | 29.1 | 27.2 | 26.9 |
Ziya-LLaMA-13B-pretrain | 30.2 | 22.7 | 27.7 | 34.4 | 32.0 | 28.9 |
LLaMA-7B-hf | 27.1 | 25.9 | 27.1 | 26.8 | 27.9 | 26.3 |
ChatGLM-6B | 34.5 | 23.1 | 30.4 | 39.6 | 37.4 | 34.5 |
Falcon-7B | 25.8 | 24.3 | 25.8 | 26.0 | 25.8 | 25.6 |
Open-LLaMA-v2-pretrain (7B) | 24.0 | 22.5 | 23.1 | 25.3 | 25.2 | 23.2 |
TigerBot-7B-base | 25.7 | 27.0 | 27.3 | 24.7 | 23.4 | 26.1 |
Aquila-7B* | 25.5 | 25.2 | 25.6 | 24.6 | 25.2 | 26.6 |
BLOOM-7B | 22.8 | 20.2 | 21.8 | 23.3 | 23.9 | 23.3 |
BLOOMZ-7B | 35.7 | 25.8 | 31.3 | 43.5 | 36.6 | 35.6 |
baichuan-7B | 42.8 | 31.5 | 38.2 | 52.0 | 46.2 | 39.3 |
Gaokao
Gaokao 是一个以中国高考题作为评测大语言模型能力的数据集,用以评估模型的语言能力和逻辑推理能力。
只保留了其中的单项选择题,随机划分后对所有模型进行统一 5-shot 测试。
结果
以下是测试的结果。
Model | Average |
---|---|
Open-LLaMA-v2-pretrain | 21.41 |
Ziya-LLaMA-13B-pretrain | 23.17 |
Falcon-7B | 23.98 |
TigerBot-7B-base | 25.94 |
LLaMA-7B | 27.81 |
ChatGLM-6B | 21.41 |
BLOOM-7B | 26.96 |
BLOOMZ-7B | 28.72 |
Aquila-7B* | 24.39 |
baichuan-7B | 36.24 |
AGIEval
AGIEval 旨在评估模型的认知和解决问题相关的任务中的一般能力。
只保留了其中的四选一单项选择题,随机划分后对所有模型进行了统一5-shot测试。
结果
Model | Average |
---|---|
Open-LLaMA-v2-pretrain | 23.49 |
Ziya-LLaMA-13B-pretrain | 27.64 |
Falcon-7B | 27.18 |
TigerBot-7B-base | 25.19 |
LLaMA-7B | 28.17 |
ChatGLM-6B | 23.49 |
BLOOM-7B | 26.55 |
BLOOMZ-7B | 30.27 |
Aquila-7B* | 25.58 |
baichuan-7B | 34.44 |
- 其中 Aquila 模型来源于智源官方网站(https://model.baai.ac.cn/model-detail/100098) 仅做参考
英文榜单
除了中文之外,也测试了模型在英文上的效果。
MMLU 是包含57个多选任务的英文评测数据集,涵盖了初等数学、美国历史、计算机科学、法律等,难度覆盖高中水平到专家水平,是目前主流的LLM评测数据集。
采用了开源 的评测方案,最终 5-shot 结果如下所示:
结果
Model | Humanities | Social Sciences | STEM | Other | Average |
---|---|---|---|---|---|
LLaMA-7B2 | 34.0 | 38.3 | 30.5 | 38.1 | 35.1 |
Falcon-7B1 | - | - | - | - | 35.0 |
mpt-7B1 | - | - | - | - | 35.6 |
ChatGLM-6B0 | 35.4 | 41.0 | 31.3 | 40.5 | 36.9 |
BLOOM-7B0 | 25.0 | 24.4 | 26.5 | 26.4 | 25.5 |
BLOOMZ-7B0 | 31.3 | 42.1 | 34.4 | 39.0 | 36.1 |
moss-moon-003-base (16B)0 | 24.2 | 22.8 | 22.4 | 24.4 | 23.6 |
moss-moon-003-sft (16B)0 | 30.5 | 33.8 | 29.3 | 34.4 | 31.9 |
baichuan-7B0 | 38.4 | 48.9 | 35.6 | 48.1 | 42.3 |
总结
baichuan-7B模型基于标准的 Transformer 结构,采用了和 LLaMA 一样的模型设计,核心优势如下:
- 在同尺寸模型中baichuan-7B达到了目前SOTA的水平。
- baichuan-7B使用自有的中英文双语语料进行训练,在中文上进行优化,在C-Eval达到SOTA水平。
- 不同于LLaMA完全禁止商业使用,baichuan-7B使用更宽松的开源协议,允许用于商业目的。
文章和示例代码开源在GitHub: GPT实战教程,了解所有主流的开源LLM。
公众号:coding进阶。关注公众号可以获取最新GPT实战内容。
个人网站:Jincheng’s Blog。
知乎:无忌。